From Heuristics to Hyperheuristics: Comparative Study and Real-World Impact in Optimization
Abstract
Optimization underpins decision-making across scientific, engineering, and data-driven domains. This paper presents a systematic, multi-layered comparison of heuristic, metaheuristic, and hyperheuristic algorithms, dissecting their architectural paradigms, convergence behaviors, parameter sensitivities, and scalability profiles. Through an exhaustive literature synthesis spanning 150+ peer-reviewed sources (2015–2025), implementation of 12 representative algorithms, and rigorous benchmarking on 8 standard test suites and 6 real-world datasets, we quantify performance across solution quality, computational efficiency, robustness, and generalization.Key contributions include: 1) A taxonomic framework unifying heuristic, metaheuristics, and hyperheuristics under a unified abstraction hierarchy, 2) Novel performance landscapes via Multi Dimensional Scaling (MDS) and Pareto frontier analysis, 3) Real-world impact assessment in logistics, manufacturing, healthcare, and smart infrastructure, and 4) Identification of emerging research vectors, including explainable hyperheuristics, transfer learning in algorithm selection, and integration with foundation models. The study concludes that while heuristics dominate in low-latency, interpretable settings, metaheuristics lead in robust global search, and hyperheuristics emerge as the automated, adaptive backbone for next-generation optimization systems.
Keywords:
Optimization, Algorithm taxonomy, Convergence analysis, Multi-dimensional scaling, BenchmarkingReferences
- [1] Tan, N. D., Kim, H. S., Long, L. N. B., Nguyen, D. A., & You, S. S. (2024). Optimization and inventory management under stochastic demand using metaheuristic algorithm. Plos one, 19(1), e0286433. https://doi.org/10.1371/journal.pone.0286433
- [2] Tejani, G. G., Mashru, N., Patel, P., Sharma, S. K., & Celik, E. (2024). Application of the 2-archive multi-objective cuckoo search algorithm for structure optimization. Scientific reports, 14(1), 31553. https://doi.org/10.1038/s41598-024-82918-2
- [3] Lameesa, A., Hoque, M., Alam, M. S. Bin, Ahmed, S. F., & Gandomi, A. H. (2024). Role of metaheuristic algorithms in healthcare: a comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health. Journal of computational design and engineering, 11(3), 223–247. https://doi.org/10.1093/jcde/qwae046
- [4] Wolpert, D. H., & Macready, W. G. (2002). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
- [5] Alimoradi, M., Azgomi, H., & Asghari, A. (2022). Trees social relations optimization algorithm: a new swarm-based metaheuristic technique to solve continuous and discrete optimization problems. Mathematics and computers in simulation, 194, 629–664. https://doi.org/10.1016/j.matcom.2021.12.010
- [6] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Woodward, J. R. (2009). Exploring Hyper-heuristic Methodologies with Genetic Programming. In Mumford, C. L. & Jain, L. C. (Eds.), Computational intelligence: collaboration, fusion and emergence (pp. 177–201). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01799-5_6
- [7] Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Chapter 10 - Metaheuristic algorithms: a comprehensive review. In Sangaiah, A. K. … & Zhang, Z. (Eds.), Computational intelligence for multimedia big data on the cloud with engineering applications (pp. 185–231). Academic Press. https://doi.org/10.1016/B978-0-12-813314-9.00010-4
- [8] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. https://B2n.ir/tp1106
- [9] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
- [10] Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. Proceedings of the ieee international conference on neural networks (Vol. 4, pp. 1942–1948). Citeseer. https://doi.org/10.1109/ICNN.1995.488968
- [11] Dorigo, M. (1992). Optimization, learning and natural algorithms [Thesis]. https://www.scirp.org/reference/referencespapers?referenceid=1301739
- [12] Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
- [13] Khodadadi, N., Gharehchopogh, F. S., Abdollahzadeh, B., & Mirjalili, S. (2022). AMHS: archive-based multi-objective harmony search algorithm. Proceedings of 7th international conference on harmony search, soft computing and applications (pp. 259–269). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2948-9_25
- [14] Mahmoodi, A., Jasemi Zergani, M., Hashemi, L., & Millar, R. (2022). Analysis of optimized response time in a new disaster management model by applying metaheuristic and exact methods. Smart and resilient transportation, 4(1), 22–42. https://doi.org/10.1108/SRT-01-2021-0002
- [15] Ryser-Welch, P., & Miller, J. F. (2014). A review of hyper-heuristic frameworks [presentation]. Proceedings of the evo20 workshop, aisb (pp. 1–7). https://B2n.ir/uw5448
- [16] Daliri, A., Branch, K., Sheikha, M., Roudposhti, K. K., Branch, L., Alimoradi, M., & Mohammadzadeh, J. (2023). Optimized categorical boosting for gastric cancer classification using heptagonal reinforcement learning and the water optimization algorithm. 7th international conference on pattern recognition and image analysis (IPRIA) (pp. 1–6). IEEE. https://B2n.ir/qj9461
- [17] Lamtar-Gholipoor, M., Fakheri, S., & Alimoradi, M. (2024). Artificial neural network TSR for optimization of actinomycin production. Big data and computing visions, 4(1), 57–66. https://doi.org/10.22105/bdcv.2024.474793.1184
- [18] Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European journal of operational research, 176(1), 177–192. https://doi.org/10.1016/j.ejor.2005.08.012
- [19] Got, A., Moussaoui, A., & Zouache, D. (2020). A guided population archive whale optimization algorithm for solving multiobjective optimization problems. Expert systems with applications, 141, 112972. https://doi.org/10.1016/j.eswa.2019.112972
- [20] Tsai, C. W., Huang, W. C., Chiang, M. H., Chiang, M. C., & Yang, C. S. (2014). A hyper-heuristic scheduling algorithm for cloud. IEEE transactions on cloud computing, 2, 236–250. https://doi.org/10.1109/TCC.2014.2315797
- [21] Akbel, M., Kahraman, H. T., Duman, S., & Temel, S. (2024). A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem. Applied intelligence, 54(22), 11603–11648. https://doi.org/10.1007/s10489-024-05714-5
- [22] Daliri, A., Alimoradi, M., Zabihimayvan, M., & Sadeghi, R. (2024). World hyper-heuristic: a novel reinforcement learning approach for dynamic exploration and exploitation. Expert systems with applications, 244, 122931. https://doi.org/10.1016/j.eswa.2023.122931
- [23] Daliri, A., Asghari, A., Azgomi, H., & Alimoradi, M. (2022). The water optimization algorithm: a novel metaheuristic for solving optimization problems. Applied intelligence, 52(15), 17990–18029. https://doi.org/10.1007/s10489-022-03397-4
- [24] Tejani, G. G., Sharma, S. K., Mousavirad, S. J., & Radwan, A. (2025). The two-archive multi-objective grey wolf optimization algorithm for truss structures. International journal of computational intelligence systems, 18(1), 245. https://doi.org/10.1007/s44196-025-00972-8
- [25] Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, c3p report, 826(1989), 37. https://B2n.ir/xy7367